
Serial Number 740.067 

Filing Date 24 October 1996 

Inventor Carl G. Schaefer. Jr. 
David J. Haas 
Kellv M. McCool 

NOTTCE 

The above identified patent application is available for licensing. Requests for information should be 
addressed to: 

OFFICE OF NAVAL RESEARCH 
DEPARTMENT OF THE NAVY 
CODE OOCC 
ARLINGTON VA 22217-5660 

jST 

RKjBoroa tea  BUDite ^«^     | 

flöDQPA*0* 
ÜSSPECTEÖ ü 

19911211 035 



Navy Case No. 78,040 

NEURAL NETWORK BASED METHOD FOR ESTIMATING 

HELICOPTER LOW AIRSPEED 

STATEMENT OF GOVERNMENT RIGHTS 

The invention described herein may be manufactured and 

5    used by or for the Government of the United States of America 

for governmental purposes without the payment of any royalties 

thereon or therefor. 

BACKGROUND OF THE INVENTION 

FIELD OF INVENTION 

!0 The present invention relates generally to virtual 

sensors and, more particularly, to a means and method 

utilizing a neural network for estimating helicopter airspeed 

at speeds below about 50 knots using only fixed system 

parameters (i.e., parameters measured or determined in a 

15 reference frame fixed relative to the helicopter fuselage) as 

inputs to the neural network. 

BRIEF DESCRIPTION OF RELATED ART 

Helicopters are designed for a wide variety of missions 

including anti-submarine warfare, vertical replenishment, and 

20 search and rescue missions. Although helicopters routinely 

operate at forward airspeeds above 100 knots, such missions 

require that a large portion of flight time be conducted in 

the low airspeed flight regime (i.e., airspeeds below about 50 

knots).  Because flight in the low airspeed regime requires 

25 increased power, accurate low airspeed data is needed to 

maintain control margins. Low airspeed data is needed by 

pilots flying instrument approaches in order to maintain 

critical control authority, particularly in connection with 

tail-rotor effectiveness. On attack helicopters, low airspeed 

3 0    information is critical to accurate weapons firing solutions. 
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In addition, high vibratory loads can occur in some low 

airspeed maneuvers resulting in fatigue damage accumulation in 

flight critical components. Technology for monitoring the 

safe life remaining on such flight critical components has 

5 been developed through helicopter usage monitoring and flight 

regime recognition techniques, e.g., Health and Usage 

Monitoring Systems' (HUMS). Normally, information from 

multiple sensors must be examined collectively to make 

diagnostic and prognostic decisions. However, the success of 

10 HUMS technology in the low airspeed regime is dependent on 

accurate low airspeed information. Without correct low 

airspeed information, usage monitoring algorithms cannot 

recognize the low airspeed maneuvers and, therefore, may not 

register critical fatigue accumulation data. 

15 Due to inaccuracy associated with use of traditional 

pitot-static probes in a low airspeed environment, as well as 

with interference generated by the main rotor downwash, 

instrumentation for accurately measuring airspeed and sideslip 

angle in the low airspeed regime is generally lacking. Thus, 

20    although accurate low airspeed information is needed by pilots 

and monitoring algorithms,  it  is  not available  using 

traditional methods of measuring airspeed and sideslip angle. 

Development of a measurement system that accurately 

estimates low airspeed and sideslip angle has long been a 

25 difficult challenge. Interest in low airspeed measurement 

began in the 1950s when preliminary concepts were developed 

and flight tested. These concepts involved mounting probes 

above the rotor hub as well as in the wake beneath the rotor. 

Since the 1950s, these concepts have been refined and a 

3 0 variety of low airspeed sensor designs have been flight 

tested. One such system employs two venturi tubes on opposite 

ends of a rotating arm installed above the rotor hub to 

measure true airspeed magnitude and direction, e.g., LORAS 
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(Low Range Airspeed System) produced by the Pacer Company of 

the United States. The differential pressure between the two 

sensors is used to calculate the airspeed and sideslip angle. 

Such systems, however, require slip ring assemblies or some 

5 other means of transferring data from the rotating reference 

frame of the rotor to the fixed (i.e., nonrotating) reference 

frame of the fuselage. Another approach involves a sensor 

designed to be mounted under the rotor wherein the nature of 

the wake is used to determine helicopter airspeed, e.g., 

10 LASSIE (Low Air Speed Sensing and Indicating System) produced 

by the GEC Company of England. This system uses a pitot- 

static probe which can rotate about 360° to provide airspeed 

and sideslip angle information. However, the flow environment 

under the rotor system is complex and empirical methods are 

15 used to linearize the output. Several other techniques, 

including those using ultrasonic transmission times and shed 

vortex characteristics, have been proposed for deducing low 

airspeed and sideslip angle information. 

The search for an effective low airspeed sensor has long 

20 been a difficult challenge for the helicopter R&D sector. Few 

proposed solutions have made it into use. Most proposed low 

airspeed measurement systems are externally mounted and 

require transferring information from a reference frame 

rotating with the rotor to a reference frame fixed relative to 

25 the helicopter fuselage (i.e., a helicopter fixed system of 

coordinates XYZ originating in the helicopter fuselage). Due 

to the mechanical complexity, expense, and increased drag 

introduced by proposed low airspeed measurement systems, most 

helicopters are not equipped with low airspeed sensors. 

3 0 Moreover, in many cases, physical sensors cannot be affordably 

and reliably applied in an operational environment on military 

helicopters.   Thus, the vast majority of commercial and 
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military helicopters in use today do not have an airspeed 

system that can accurately measure airspeed below about 50 

knots even though this is within the flight regime of the 

helicopter. Generally, investment in low airspeed measurement 

5 equipment is reserved for those aircraft with a critical low 

airspeed mission. Consequently, there is a need for a simple, 

low cost means and' method for determining low airspeed and 

sideslip angle experienced by the helicopter. 

SUMMARY OF THE INVENTION 

10 Accordingly, it is an object of the present invention to 

provide a means and method for simply, accurately, and 

economically determining helicopter low airspeed information 

(i.e., airspeed and sideslip angle below about 50 knots). 

It is a further object of the present invention to 

15    provide a means and method for determining helicopter low 

airspeed using only input parameters derived in the fixed 

reference frame of the helicopter fuselage. 
It is still a further object of the present invention to 

provide a means and method employing existing flight sensors 

2 0    supplying fixed frame parameters to a neural network for 

estimating low airspeed. 
It is yet a further object of the present invention to 

provide a means and method for determining helicopter low 

airspeed capable of being embedded into a helicopter's 

25    existing flight data recording system. 
Other objects and advantages of the present invention 

will become apparent to those skilled in the art upon a 

reading of the following detailed description taken in 

conjunction with the drawings and the claims supported 

3 0    thereby. 
In accordance with one embodiment of the present 

invention, these objects are met by providing a method for 
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estimating airspeed information of a helicopter operating in 

a low airspeed flight range of below about 50 knots. The 

method includes the steps of: (a) defining input parameters 

derivable from variable state parameters generated during 

5 flight of the helicopter and measurable in a nonrotating 

reference frame associated with the helicopter; (b) 

determining the input parameters and a coinciding reference 

speed information at a plurality of flight conditions 

representing a predetermined low airspeed flight domain of the 

10 helicopter; (c) establishing a learned relationship between 

the determined input parameters and the coinciding reference 

speed information wherein the relationship is represented by 

at least one nonlinear equation; (d) storing the at least one 

nonlinear equation in a memory onboard the helicopter; (e) 

15 measuring real time values of the variable state parameters 

during low airspeed flight of the helicopter; (f) calculating 

real time values of the input parameters; (g) processing the 

real time values of the input parameters in accordance with 

the at least one nonlinear equation to determine, in real 

20 time, the airspeed information; and (h) displaying the real 

time airspeed information. By continuously repeating steps 

(e) through (h) at a predetermined sampling rate during low 

airspeed flight, airspeed of the helicopter is estimated and 

displayed in a real time fashion. 
25 When the airspeed information is low airspeed of the 

helicopter, the coinciding reference speed information is a 

coinciding reference speed of the helicopter.  Then, step (c; 

may be performed using a neural network that has been trained 

with  training  exemplars  that  correspond  to  the  input 

3 0 parameters and the coinciding reference speed. The training 

exemplars are measured at a plurality of flight conditions 

representative of a flight domain experienced by the 

helicopter below about 50 knots. Thus, step (c) results in at 

5 



Navy Case No. 78,040 

least one airspeed equation representing a non-linear input- 

output relationship between the input parameters and the 

reference speed. 

Additionally, when the airspeed information is a sideslip 

5 angle during low airspeed flight of the helicopter, the 

coinciding reference speed information is a coinciding 

reference sideslip angle of the helicopter. Then, step (c) 

may be performed using a neural network that has been trained 

with  training  exemplars  that correspond  to  the  input 

10 parameters, a coinciding reference speed and the coinciding 

reference sideslip angle which is derived from the coinciding 

reference speed. The training exemplars are measured at a 

plurality of flight conditions representative of a flight 

domain experienced by the helicopter below about 50 knots. 

15 Thus, step (c) results in at least one sideslip equation 

representing a non-linear input-output relationship between 

the input parameters and the reference sideslip angle. 

The present method may include the further step, 

performed prior to step (f), of inputting into the memory at 

20 least one initial parameter used during step (f) to calculate 

the input parameters. The input parameters determined during 

step (b) and calculated during step (f) include: helicopter 

gross weight; helicopter center of gravity; longitudinal 

cyclic  stick position;  lateral  cyclic  stick position; 

25 collective stick position; pilot pedal position; pitch 

attitude; roll attitude; pitch rate; roll rate; yaw rate; at 

least one engine torque; at least one rotor rotational speed; 

and helicopter altitude. 
In accordance with another embodiment of the present 

3 0 invention, a method of determining low airspeed of a 

helicopter is provided. The method includes the steps of: 

measuring, in a nonrotating reference frame associated with 

the helicopter, a plurality of variable state parameters 
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generated during flight of the helicopter; determining a 

plurality of input parameters based on the measured variable 

state parameters; placing the plurality of input parameters in 

a memory; and processing the plurality of input parameters by 

5 means of a neural network that has been trained with a 

plurality of training exemplars corresponding to the variable 

state parameters and a coinciding reference speed of the 

helicopter. The training exemplars are measured at a 

plurality of flight conditions representing a predetermined 

10 low airspeed flight domain of the helicopter. The neural 

network is responsive to values of the variable state 

parameters not previously encountered for deriving low 

airspeed of the helicopter based upon the plurality of input 

parameters.    The  measuring,  determining,  storing  and 

15 processing steps may be continuously repeated during low 

airspeed flight of the helicopter resulting in a real time 

indication of helicopter low airspeed. 

The  current method may  include the  further  step, 

performed prior to said measuring step, of inputting into the 

2 0    memory at least one initial parameter to be used during the 

determining step to determine the input parameters, and the 

further step of displaying the low airspeed derived during the 

processing step. Preferably, the inputting step includes 

inputting a takeoff weight and a takeoff center of gravity 

25 position of the helicopter. Additionally, the measuring step 

is performed at a predetermined sampling rate and includes the 

steps of measuring: fuel expended; longitudinal cyclic stick 

position; lateral cyclic stick position; collective stick 

position;  pedal position;  pitch rate, roll rate, and yaw 

3 0    rate;   at least one engine torgue;   at least one rotor 

rotational speed;  and static pressure and/or temperature of 

the surrounding air. 
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BRIEF DESCRIPTION OF THE DRAWINGS 

The foregoing objects and other advantages of the present 

invention will be more fully understood by reference to the 

following  description  taken  in  conjunction  with  the 

5    accompanying drawings wherein like reference numerals refer to 

like or corresponding elements throughout and wherein: 

FIG. 1 is a symbolic representation of one embodiment of 

the present invention installed on a helicopter; 

FIG. 2 is a flow chart of a method for practicing the 

10    present invention; 

FIG. 3 shows the four quadrants for classifying sideslip 

angle in accordance with the present invention; 

FIG. 4 represents a typical data set for training or 

testing the neural networks in accordance with the present 

15     invention; 

FIG. 5 presents preliminary airspeed predictions using a 

test data set containing both in and out of ground effect 

data; 
FIG. 6A and 6B present airspeed predictions using test 

2 0    and training data sets, respectively, containing out of ground 

effect data only; 
FIG. 7 presents airspeed predictions using a test data 

set containing in ground effect data only; and 

FIG. 8 presents airspeed predictions using a linear model 

25    and a test data set containing out of ground effect data. 

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT 

The present invention provides means and method that 

utilize neural network technology for estimating helicopter 

low airspeed (i.e., airspeed below about 50 knots) using 

3 0    parameters measured or determined in a reference frame fixed 

relative to the helicopter fuselage as inputs to the neural 

network.  Airspeed is a measure of the helicopter's velocity 

8 
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relative to the surrounding air. One embodiment of the 

present invention provides a virtual sensor employing advanced 

neural networks for estimating helicopter low airspeed in a 

real time fashion. A further embodiment of the present 

5 invention provides a system for estimating airspeed of a 

helicopter below about 50 knots in response to variable state 

parameters generated during flight of the helicopter and 

measured in the fixed (i.e., nonrotating) reference frame 

associated with the helicopter. A still further embodiment of 

10 the present invention provides a method for estimating real 

time airspeed of a helicopter operating below about 50 knots. 

Additionally, the present invention can be used to determine 

sideslip angle of a helicopter operating at low airspeeds. 

Certain aspects of the present invention are presented in: 

15 McCool, Kelly M. , David J. Haas and Carl G. Schaefer, Jr., "A 

Neural Network Based Approach to Helicopter Low Airspeed and 

Sideslip Angle Estimation," Proceedings of American Institute 

of Aeronautics and Astronautics Flight Simulation Technologies 

Conference, Paper No. 96-3481 (July 29-31, 1996) pp. 91-101, 

20    incorporated herein by reference. 

Referring now to the drawings, and particularly to FIG. 

1, which symbolically depicts the present invention installed 

onboard helicopter 10. Virtual sensor 11 in accordance with 

the present invention includes:  determining means 12 for 

25 determining input parameters and for generating successive 

signals representing the input parameters; at least one 

equation representing a nonlinear input-output relationship 

between the input parameters and a desired output, e.g., low 

airspeed or sideslip angle;  memory means 14 for storing the 

3 0 at least one equation and for successively receiving (and 

optionally storing) signals from determining means 12; and 

processing means 16 operatively coupled to memory means 14 and 

responsive to signals received from memory means 14 for 
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generating desired output signals based on the input 

parameters and the at least one equation. Determining means 

12 preferably includes input means 18 for entering initial 

parameters, measuring means 20a through 2Ox for measuring 

5 variable state parameters, and means 22 for calculating the 

input parameters based on the initial parameters and the 

variable state parameters. Input means 18 may be used to 

enter initial parameters into memory 14 and/or into means 22 

for calculating the input parameters.   With respect to 

10 measuring means 20a-20x, x indicates the number of measuring 

means used to measure the variable state parameters. Each 

measuring means 20a-20x generates signals representing values 

of the particular variable state parameter measured and 

transmits the signals to memory 14 and/or to means 22 for 

15 calculating the input parameters. The invention may further 

include display means 24 operatively coupled to processing 

means 16 for receiving the desired output signals from 

processing means 16 and for providing an indication of the 

desired output in response thereto. 
20 Determining means 12 derives input parameters from the 

entered initial parameters and the variable state parameters 

measured during low speed flight. Desired output, e.g., 

helicopter airspeed, is estimated in a real time fashion by 

continuously updating, at a predetermined sampling rate, 

25 measured values of the variable state parameters and 

calculated values of the input parameters for input into 

processing means 16. Appropriate sampling rates may be from 

1 to 20 samples per second (Hz) and preferably about 8 to 10 

Hz. 
30 As shown in Table 1 below, exemplary input parameters 

determined by determining means 12 for use with the present 

invention may include: (1) helicopter gross weight during 

flight;   (2) helicopter center of gravity position during 

10 
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flight; (3) longitudinal cyclic stick position; (4) lateral 

cyclic stick position; (5) collective stick position; (6) 

pilot pedal position; (7) pitch attitude; (8) roll attitude; 

(9) pitch rate; (10) roll rate; (11) yaw rate; (12) at 

5 least one engine torque (if the helicopter has more than one 

engine, the torque of one or more of the engines may be 

measured and used as input parameters); (13) at least one 

rotor rotational speed (if the helicopter has more than one 

main rotor, the rotational speed of one or more of the rotors 

10    may be measured and used as input parameters) ;  and (14) 

helicopter altitude. 
Exemplary initial parameters may include the helicopter 

gross weight at takeoff (i.e., weight of helicopter, fuel, and 

cargo) and the helicopter center of gravity position at 

15 takeoff. Exemplary easily measurable variable state 

parameters may include: (1) fuel expended during flight; (2) 

longitudinal cyclic stick position; (3) lateral cyclic stick 

position; (4) collective stick position; (5) pilot pedal 

position;  (6) pitch rate;  (7) roll rate;  (8) yaw rate;  (9) 

20    engine torque(s);  (10) rotor rotational speed(s);  and (11) 

static pressure and/or temperature of the surrounding air. 

Measuring means, 20a-20x, includes sensors, 20a-20x, for 

sampling the variable state parameters at the predetermined 

sampling rate. 
25 The variable state parameters are an indication of pilot 

control inputs and helicopter response at a particular time 

during flight. The variable state parameters are measured in 

a nonrotating reference frame fixed relative to the helicopter 

fuselage (i.e., a helicopter fixed system of coordinates XYZ 

3 0 originating in the helicopter fuselage). Generally, the 

helicopter fixed reference frame includes an X axis parallel 

to the helicopter longitudinal (fore-aft) axis, a Y axis 

parallel to the helicopter lateral (port-starboard) axis, and 

11 
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10 

15 

20 

25 

a vertical Z axis orthogonal to the X and Y axes. By only 

using parameters measured in the fixed system, or derived from 

parameters measured in the fixed system, the need for using 

complicated methods of transferring data from the rotating 

system of the rotor to the fixed system of the fuselage is 

avoided. Most prior art systems require that such data be 

transferred from a rotating to a fixed system. 

TABLE 1 

How Input Parameter is Determined 

derived from takeoff gross weight minus 

Input Parameter 

Gross Weight 

Center of Gravity 

measured weight of fuel burned 

derived from takeoff center of gravity 
and eg shift due to measured weight fuel 
burned 

Longitudinal cyclic  measured directly using position detector 
stick position 

30 

Lateral cyclic 
stick position 

Collective stick 
position 

Pedal position 

Pitch attitude 

Roll attitude 

Pitch rate 

Roll rate 

Yaw rate 

Engine torque(s) 

Rotor speed(s) 

Altitude 

measured directly using position detector 

measured directly using position detector 

measured directly using position detector 

derived by integrating measured pitch 
rate 

derived by integrating measured roll rate 

measured directly using rate gyro 

measured directly using rate gyro 

measured directly using rate gyro 

measured directly using torque meter(s) 

measured directly using tachometer(s) 

derived from measured static pressure and 
or temperature 

12 
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In the preferred embodiment, memory means 14, processing 

means 16, input means 18, means 22 for calculating the input 

parameters, and display means 24 are components of an onboard 

computer system. For example, input means 18 is a computer 

5 keyboard, memory means 14 is at least one computer memory 

device (e.g., RAM and/or EPROM), processing means 16 and 

calculating means 22 are one or more computer processors, and 

display means 24 is a computer monitor. A software 

representation of the at least one neural network equation is 

10 developed and installed into the onboard computer system as, 

for example, source code (e.g., C source code) in a hard 

drive, Flash memory, or as an EPROM chip. Measuring means, 

20a-20x, may comprise sensors installed for use with the 

present invention and/or may include existing flight data 

15 sensors already onboard the helicopter. Preferably, the 

computer system and sensors are part of a flight data 

recording system and/or automatic flight control system 

onboard the helicopter. 
Input parameters are determined during flight and entered 

20 or transmitted to the computer system for use with the source 

code representation of the neural network equations to 

estimate airspeed. As shown in Table 1, exemplary input 

parameters are determined as follows: (1) helicopter actual 

gross weight during flight is determined from the helicopter 

25 gross weight at takeoff (an initial parameter) minus the 

weight of fuel burned (derived from fuel expended which is a 

measured variable state parameter measured, e.g., using a 

standard helicopter fuel gauge); (2) position of the center 

of gravity (eg) during flight is determined from the eg at 

3 0 take off (an initial parameter) and the eg shift due to weight 

of fuel expended; (3) longitudinal cyclic stick position, (4) 

lateral cyclic stick position, and (5) collective stick 

position are variable state parameters measured directly using 

13 
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position detectors or transducers for detecting the position 

of the cyclic or collective stick, e.g., rotary or linear 

variable differential transformers for measuring linear or 

angular displacement of the cyclic or collective stick as a 

5 percentage of maximum displacement; (6) pilot pedal position 

is a variable state parameter measured directly using position 

detectors or transducers for detecting the position of the 

pedal, e.g., rotary or linear variable differential 

transformers for measuring linear or angular displacement of 

10 the pedal as a percentage of maximum displacement; (7) pitch 

rate, (8) roll rate, and (9) yaw rate are variable state 

parameters measured directly using, e.g., rate gyros 

(generally one gyro for each of pitch, roll and yaw); (10) 

pitch attitude and  (11)  roll attitude are derived by 

15 integrating measured pitch rate and roll rate, respectively; 

(12) engine torque is a variable state parameter measured 

directly using a torque meter; (13) rotor speed is a variable 

state parameter measured directly using a tachometer; and 

(14) altitude (pressure altitude or density altitude) is 

20 derived from the measured static pressure and/or temperature 

of air surrounding the helicopter (a variable state 

parameter). Sensors 20a-20x for measuring the variable state 

parameters and methods of obtaining derived quantities are 

well known in the art and will not be discussed in detail 

25    herein. 
In a preferred embodiment, the at least one equation 

includes at least one airspeed equation representing a 

nonlinear input-output relationship between the plurality of 

input parameters and airspeed and operative for determining 

3 0 low airspeed based upon the plurality of input parameters. 

The at least one airspeed equation is derived by means of a 

neural network that has been trained using training exemplars 

corresponding to the plurality of input parameters and a 

14 
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coinciding reference speed of the helicopter. The training 

exemplars are determined at a plurality of flight conditions 

representing a predefined low airspeed flight domain of the 

helicopter (i.e., flight domain experienced by the helicopter 

5    below about 50 knots). 

The at least one equation may further include at least 

one sideslip equation representing nonlinear input-output 

relationships between the input parameters and a sideslip 

angle of the helicopter and operative for determining sideslip 

10 angle or for classifying the sideslip angle of the helicopter 

into one of four quadrants. The at least one sideslip 

equation is derived by means of a neural network that has been 

trained with a plurality of training exemplars that correspond 

to the input parameters, a coinciding reference speed of the 

15    helicopter and a coinciding sideslip angle derived from the 

coinciding reference speed.   The training exemplars are 

measured  at multiple  flight  conditions  representing  a 

predetermined low airspeed flight domain of the helicopter. 

In accordance with the present invention, neural network 

20 technology is employed to estimate helicopter low airspeed and 

sideslip angle. That is, the at least one equation of the 

present invention is established using neural networks. Use 

of neural network technology allows for nonlinear transfer 

between  input parameters  and airspeed whereas previous 

25 analytical approaches for estimating helicopter low airspeed 

have employed linear methods. The neural networks employed 

include an input layer for receiving input parameters, an 

output layer for outputting estimated airspeed or sideslip 

angle, and one or more hidden layers for mapping the input 

30 layer to the output layer through a learned, nonlinear input- 

output relationship. The networks are trained, and the 

nonlinear input-output relationships learned, based on 

measurable quantities (i.e., measured reference speed and 

15 
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easily measurable variable state parameters from which the 

input parameters are calculated). One skilled in the art of 

neural networks could write a suitable program with the 

guidance provided herein. Additionally, commercially 

5 available neural network software packages may be used for 

practicing the present invention. NeuralWare, a commercially 

available neural network software package available from 

NeuralWare, Inc., 202 Park West Dr., Pittsburgh, PA 15275, was 

used in developing the network architecture of present 

10 invention. The neural network technology and how it is 

employed in the present invention is more fully described 

below. 
The neural networks applicable to the present invention 

include, but are not limited to, backpropagation neural 

15 networks, linear vector quantization neural networks, modular 

neural networks, probabilistic neural networks, radial basis 

function neural networks, self organizing maps, and recurrent 

neural networks. In one preferred embodiment, a 

backpropagation (BP) neural network is used to predict low 

2 0    airspeed and a linear vector quantization (LVQ) neural network 

is used to classify sideslip angle into one of four quadrants. 

Referring to FIG. 2, a method (more fully described 

below) for practicing the present invention is presented. 

Initially, as represented by boxes 30-34, a neural network is 

25 trained to develop nonlinear input-output relationship between 

input variables and the desired output. First, at 30, the 

user defines input parameters which may be derived from 

variable state parameters that are generated during flight of 

the helicopter and that are measured in the helicopter fixed 

30 reference frame. Next, at 32, training exemplars used to 

train the network are determined. The training exemplars, 

which include the input parameters and a corresponding desired 

output (i.e., airspeed or sideslip angle), are either directly 

16 
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measured during test flights or are determined based on 

parameters measured during test flights.  The data used to 

determine the training exemplars is measured at a plurality of 

flight conditions representing a predetermined low airspeed 

5    flight domain of the helicopter.  Then, at 34, the neural 

network learns an input-output relationship between the input 

parameters and the corresponding desired output.  The input- 

output relationship is represented by at least one nonlinear 

equation.  At 36, the at least one nonlinear equation is 

10    stored in a memory device onboard the helicopter.  Once the 

input-output equations are installed onboard the helicopter, 

only the variable state parameters need be measured to 

estimate helicopter airspeed during low airspeed operation. 

At  38,  initial parameters,  used  in calculating  input 

15    parameters, are entered into a memory device onboard the 

helicopter.  At 40, while the helicopter is operating in the 

low airspeed range, onboard sensors measure variable state 

parameters in the helicopter fixed reference frame.  At 42, 

the input parameters are calculated based on the entered 

20    initial parameters and the measured variable state parameters. 

The input parameters are optionally stored, at 44, in a memory 

device onboard the helicopter.  At 46, the input parameters 

are processed in accordance with the at least one nonlinear 

equation to determine the desired output. Finally, at 48, the 

25    desired output is displayed for use by occupants of the 

helicopter and/or is recorded by the aircraft monitoring 

system.   By continuously measuring the variable state 

parameters at a predetermined sampling rate during low 

airspeed flight and then calculating and processing the input 

30    parameters, the desired output is estimated and displayed in 

a real time fashion. 
For purposes of training the neural network a plurality 

of training exemplar are determined over the expected flight 

17 



Navy Case No. 78,040 

domain of the helicopter. With respect to estimating low 

airspeed, the training exemplars corresponds to the input 

parameters and a corresponding reference speed of the 

helicopter. With respect to determining or classifying 

5 sideslip angle, the training exemplars corresponds to the 

input parameters, a corresponding reference speed of the 

helicopter, and a corresponding sideslip angle. Actual 

helicopter low airspeed may be measured and used as the 

training exemplar reference speed.   However,  accurately 

10 measuring helicopter low airspeed is difficult, e.g., using a 

pace aircraft equipped with a low airspeed sensing system such 

as a Pacer (e.g., LORAS) low airspeed indicator. Therefore, 

helicopter velocity relative to the ground measured during 

conditions of near zero ambient winds may be used as the 

15 reference speed of the helicopter. When measuring helicopter 

velocity relative to the ground, tests to determine network 

training exemplars should be conducted only when prevailing 

winds are near zero (preferably below 5 knots) in order to 

minimize the difference between measured reference speed 

20 (relative to the ground) and true airspeed (relative to the 

surrounding air). Any well known method of determining 

helicopter velocity, such as Doppler radar, Global Positioning 

Satellite (GPS) systems, or Laser tracking units, may be 

employed and are within the scope of the present invention. 

25 Helicopter sideslip angle is derived from the measured 

reference speed which is broken into velocity components in 

the forward (i.e., longitudinal or x-direction) and sideward 

(i.e., lateral or y-direction) directions. 

Training the neural network results in one or more neural 

3 0 network equations being learned. The one or more neural 

network equations are then converted into computer language 

and are installed onboard the helicopter. Once the one or 

more equations are installed in the helicopter, only the input 
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parameters need be determined (based on initial parameters and 

easily measurable variable state parameters) to estimate the 

helicopter low airspeed and sideslip angle. The variable 

state parameters may be measured (for purposes of network 

5 training or during subsequent use for estimating low airspeed 

and sideslip angle) using, e.g., the well known sensors listed 

in Table 1. 
Data set selection is a critical part of developing a 

successful set of neural network architecture equations. 

10 Training exemplars for training the neural network of the 

present invention will be selected and determined for any 

particular helicopter class or configuration for which the 

present invention is used (e.g., single rotor aircraft, tandem 

rotor aircraft, tilt rotor aircraft).  Training exemplars 

15 should consist of data which fully represents the domain of 

the problem to be modeled. For example, the problem domain of 

the present invention is estimating airspeed and/or sideslip 

angle of a helicopter during low airspeed flight. 

Consequently, the training exemplars should cover the range of 

20 airspeed and sideslip combinations encountered in the low 

airspeed flight environment. 
For low airspeed estimation in accordance with the 

present invention, the helicopter is preferably tested at 

airspeeds from hover to about 50 knots over a full range of 

25 sideslip angles. Depending upon the known flight envelop of 

a particular helicopter, steady flight data only may be used 

when training the system or steady and accelerating flight 

data may be used. The data set of training exemplars should 

not be weighted toward any one flight condition as such 

30 weightings may result in neural network equations that 

estimate airspeed well in that condition but fail in other 

maneuvers. In addition, factors which might significantly 

affect the input-output relationship represented by the 
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network equations must be considered. For example, it has 

been found that the low airspeed indicator input-output 

relationship varies depending on whether the helicopter is 

operating in ground effect (IGE) or out of ground effect 

5 (OGE). These factors were considered in developing a training 

data set for the present invention. 

As stated earlier, in one preferred embodiment of the 

present invention two types of neural networks were employed. 

A backpropagation (BP) network is preferred for predicting 

10    helicopter low airspeed and a linear vector quantization (LVQ) 

network  is  preferred  for  quantifying  sideslip  angle. 

Generally, a BP network architecture consists of an input 

layer, one or more hidden layers, and an output layer. Each 

hidden layer contains one or more processing elements (PEs). 

15 At each PE a transfer function with a corresponding connection 

weight is applied to develop a relationship between the input 

and output vectors. Transfer functions may be linear or 

nonlinear, however, nonlinear transfer functions are 

preferred.  LVQ network architecture consists of an input 

20 layer containing input parameters, a Kohonen layer containing 

Kohonen PEs, and an output layer containing the network 

outputs. At each PE a transfer function with a corresponding 

connection weight is applied to develop a relationship between 

the input and output vectors.   Transfer functions may be 

25 linear or nonlinear, however, nonlinear transfer functions are 

preferred. LVQ neural networks are classification networks 

that classify related outputs into output groups referred to 

as classification outputs. A PE group (an equal number of 

Kohonen PEs) is assigned to each classification output. Each 

3 0    PE group maps only to its assigned classification output. 

The BP neural network architecture used for estimating 

airspeed includes an input layer containing the input 

parameters listed in Table 1 and an output layer containing 
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estimated airspeed as the single output. In the preferred 

embodiment, nonlinear transfer functions are employed in the 

hidden layers. During network training, the input parameters 

are entered into the network and initially a random set of 

5 connection weights is applied. The resulting network output 

(estimated airspeed) is compared with the desired output 

(measured reference'speed) and the error (difference between 

estimated airspeed and reference speed) is backpropagated 

through  the  connection  weights  which  are  adjusted 

10 appropriately. The process is iteratively repeated with new 

correction weights until the error between estimated airspeed 

and reference speed is minimized. 

The LVQ neural network architecture used to classify 

sideslip angle includes an input layer containing the input 

15 parameters listed in Table 1 and an output layer containing 

four classification outputs. As shown in FIG. 3, the four 

classification outputs classify sideslip angle into: (1) a 

forward flight (FF) classification corresponding to a sideslip 

angle of between 315 degrees and 45 degree (i.e., ±45 degrees 

20 from 0 degree sideslip angle flight); (2) a right sideward 

flight (RSF) classification corresponding to a sideslip angle 

of between 45 degrees and 135 degrees; (3) a rearward flight 

(RWD) classification corresponding to a sideslip angle of 

between 135 degrees and 225 degrees; and (4) a left sideward 

25 flight (LSF) classification corresponding to a sideslip angle 

of between 225 degrees and 315 degrees. 

The total number of PEs required in the Kohonen layer is 

data dependent and is generally set at a percentage of 

training data points employed to train the network.  One 

3 0 skilled in the art of neural networks may determine the 

optimum percentage. In the embodiment tested during 

development of the present invention, the number of Kohonen 

PEs corresponds to about 10% of the number of training data 
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points.  Thus, there were 170 PEs in the OGE network and 315 

PEs in the IGE network. 

LVQ network training occurs in two stages. During the 

first stage, input parameters are entered into the network. 

5 The network, at this point, has a random set of connection 

weights. For each input parameter set, the winning PE group 

(i.e., the PE group that maps most closely to the appropriate 

known reference output) is determined. During the first 

stage,  the connection weights  of the winning PEs  are 

10 iteratively adjusted to improve correlation between input 

parameters and classification output. The first stage of 

training results in a reasonably good classification network 

being developed. During the second stage of training, network 

refinement is performed.  By refining the connection weights, 

15 miscalculations near the boundaries between classification 

quadrants are addressed until classification errors are 

minimized. In the embodiment tested during development of the 

present invention, the training data set was passed through 

the  network  45  times  before  classification  error  was 

20    minimized. 

During development of the present invention, two data 

sets were developed, one for training the networks (i.e., 

training exemplars) and one for testing the networks. Flight 

test data, corresponding to the network training exemplars, 

25 was collected during low airspeed tests of a Navy CH-46 

helicopter at the Naval Air Warfare Center, Aircraft Division, 

Patuxent River, MD. The Navy CH-46 helicopter was tested at 

airspeeds from hover to 50 knots over a full range of sideslip 

angles.  Data was recorded during steady flight conditions as 

30 well as during accelerating forward flight starting from a 

hover. Reference speed was determined from the helicopter 

speed with reference to the ground and was measured using 

Doppler radar.  Tests were conducted only when prevailing 
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winds were below 5 knots to minimize uncertainty in the 

reference speed data.  Since winds were not accounted for 

during the flight test, the uncertainty in reference speed 

data is approximately ±5 knots. 

5 Helicopter sideslip angle was derived from the Doppler 

velocities which were broken into forward and sideward 

velocity components. The uncertainty of the reference 

sideslip angle is more significantly affected by prevailing 

winds particularly at low reference speeds.  Sideslip angle 

10 uncertainty ranges from ±90 deg at 5 knots to ±5 deg at 50 

knots. 

Fifteen input parameters, measured or determined during 

flight tests with the CH-46 helicopter (two engine torques 

were measured), were used in developing the exemplary network 

15 equations. The full data base was first separated into data 

corresponding to steady flight conditions and data taken 

during accelerating forward flight conditions. In the 

examples presented below, only steady flight conditions were 

considered.   To evenly represent the domain of the low 

20 airspeed problem, a "binning" method was developed. The data 

was separated into 36 sideslip ranges (10 deg intervals from 

0 to 3 60 deg), 10 velocity ranges (5 knot intervals, from 0 to 

50 knots), and 3 gross weight ranges (high, medium, and low 

gross weights) .   Thus, the data was partitioned into a 

25 possible 1080 bins. The training set was developed by 

randomly selecting a predetermined number of data points from 

each bin. If a particular bin had less that the preselected 

quantity of data points, then all of the data points in that 

bin were selected. 

3 0 The test data set consists of all data remaining in the 

1080 bins after the training data are removed. The test data 

are used to evaluate the network performance using data not 

previously encountered by the network (i.e., data it was not 
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trained on) and, thus, provides a measure of how well the 

network generalizes. 

As stated earlier, low airspeed indicator input-output 

relationships vary depending on whether the helicopter is 

5 operating in ground effect (IGE) or out of ground effect 

(OGE). Generally, the helicopter is considered as operating 

IGE when the altitude is less than 1.5 rotor diameters. 

Whether the helicopter was operating IGE or OGE was determined 

in the present case by reference to the pressure altitude 

10 measurement. The ground effect induces changes in static 

pressure which result in a zero or negative pressure altitude 

reading. Thus, a zero or negative pressure altitude reading 

gives an indication that the helicopter is operating IGE. To 

determine whether operation IGE or OGE significantly affects 

15    optimization of the neural network architecture and, thus, 

performance of the virtual sensor, three separate training and 

test sets were developed.  The first training and test sets, 

referred to as the baseline data, consisted of all the steady 

flight conditions available.  The second and third training 

20    and test sets were subsets of the baseline data corresponding 
» 

to OGE data and IGE data, respectively. 

FIG. 4 represents an exemplary data set (training or test 

set)  showing the  flight conditions  at which data was 

collected.  The radial lines correspond to velocity in knots 

25 while the azimuthal lines correspond to sideslip angle. A 

zero degree sideslip angle represents forward flight while a 

180 degree sideslip angle represents rearward flight. A 90 or 

270 degree sideslip angle represents right or left sideward 

flight, respectively. In the exemplary data set, samples were 

3 0 taken at a rate of 10 Hz during steady flight conditions. 

However, the present invention applies equally to networks 

trained using data taken under different flight conditione 

(e.g., accelerating flight, vertical replenishment flight). 
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For the present examples, there were 5582 OGE data points and 

8770 IGE data points. 

A parametric study was conducted on the OGE data set to 

determine the optimum neural network architecture for the 

5 preferred BP network used for estimating low airspeed. The 

number of hidden layers and the number of PEs per layer was 

varied to determine which architecture best estimated 

airspeed. The statistical parameters used to determine the 

optimum  architecture  were  the  Pearson's  correlation 

10 coefficient (R) and the root mean square (RMS) error of the 

test data set. Pearson's correlation coefficient is a measure 

of the linearity of the relationship between estimated 

airspeed and measured reference speed. The RMS error provides 

a measure of the resulting error in airspeed predictions when 

15 entering the test data set into the network. Performance of 

the neural network on the training data set will generally be 

good. Therefore, the test data set containing data not 

previously encountered by the network is used to test 

architecture optimization. In the present example, the neural 

20 network was trained using the training data set for 640,000 

iterations (i.e., the entire training data set was passed 

through the network 375 times). Every 80,000 iterations the 

resulting network nonlinear input-output relationship equation 

was saved and evaluated using the test data set.  The network 

25 was considered to be optimized when the RMS error for the test 

data set stabilized. This typically occurred around 500,000 

iterations. 

Results of the neural network architecture optimization 

are shown in Table 2.  The preferred BP network architecture 

30 for predicting low airspeed comprises a two hidden layer 

network with 25 PEs in each layer. For the preferred network 

architecture, the RMS error for the OGE test data set was 

small and R was close to one.  An alternative architecture 
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comprising a two hidden layer system with 65 PEs per layer 

produced a slightly smaller RMS error. However, this 

improvement was not considered significant enough to warrant 

the added complexity of the additional PEs. 

TABLE 2 

10 

Number of 
Hidden 
Layers 

Number of 
PEs per 
Layer 

Test Set 
RMS Error 
(knots) 

Test Set 
R 

1 25 3.440 0.968 

1 65 2.895 0.976 

2 15 2.842 0.976 

2 25 2.697 0.979 

2 65 2.676 0.979 

15 

The  nonlinear  airspeed  eguation  developed  by  the 

backpropagation neural network is: 

Airspeed= u^tanh' 
y 

JB»1 
E v**tanh £ v™tanh (ij 

n=l 

where: 

uk represents the connection weight between hidden layer 

2 processing element k and the output  (i.e., 

airspeed); 

20 v,^ represents the connection weight between hidden layer 

1  processing  element  m  and  hidden  layer  2 

processing element k; 

w^j, represents the connection weight between input n and 

hidden layer 1 processing element m; and 

25 in represents the input parameters. 

The hyperbolic tangent function (tanh) was the BP network 
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transfer function used in estimating airspeed. The three sets 

of connection weights determine the network's success in 

mapping the input parameters to the output. The training 

process which the network undergoes adjusts the weights. The 

5 summations from [k = 1 to x] and [m = 1 to y] depend upon the 

number of PEs chosen for each hidden layer. In the preferred 

network, with 25 PEs in each hidden layer, x and y are both 

25. The summation [n = 1 to z] depends upon the number of 

input parameters. 

10    Example 1: Airspeed Estimation: 

In accordance with the present invention, low airspeed of 

Navy CH-46 helicopter was estimated based on the 15 input 

parameters and the network equations learned during network 

training.  FIG. 5, presents results with the optimum network 

15 architecture (i.e., 2 hidden layer BP network with 25 PEs per 

layer) on the baseline test data set, which includes both IGE 

and OGE data. By dividing the baseline data set into two 

subsets consisting of IGE data and OGE data, it becomes 

evident that ground effect has a significant influence on the 

20 relationship between aircraft variable state parameters, as 

represented by the input parameters, and estimated airspeed. 

As shown in FIGS. 6A (OGE training data set) and 6B (OGE test 

data set), practicing the present invention during OGE flight 

only (i.e., using OGE data only) results in significant 

25 improvement in estimating low airspeed. FIG. 7 shows that 

modeling airspeed during IGE flight (i.e., using IGE data 

only) is more challenging. This is not unexpected, since the 

ground effect environment is quite complex with unsteady flow 

affecting pilot controls. 

30 To examine the degree of nonlinearity between input 

parameters and estimated airspeed, the network architecture 

with 2 hidden layers and 25 PEs per layer was modified by 
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changing the nonlinear hyperbolic tangent transfer function of 

the PEs to a linear transfer function. A linear transfer to 

the output was also applied. By using this technique, the 

network becomes equivalent to a linear regression analysis. 

5 Thus, the importance of nonlinearities in correctly modeling 

the low airspeed domain can be assessed. Results of 

determining low airspeed using input parameters measured 

during OGE flight and the linearized network architecture are 

shown in FIG. 8.  Although the linear regression technique 

10 captures the general trends correctly, the present invention 

with predetermined nonlinear input-output relationship between 

input parameters and airspeed is required to improve accuracy 

significantly. 

A statistical analysis of the nonlinear neural network 

15 error indicates that the error is close to a normal 

distribution with a mean of zero. Consequently, when using a 

BP network architecture to predict helicopter low airspeed, 

95.5% of the data predictions will fall within ±2a where a is 

the RMS error.  Table 3 shows results of the test data sets 

20    for the four cases examined. 

TABLE 3 
Accuracy 

RMS Error    ±2CT 
(knots)    (knots) 

25 Nonlinear Network 
OGE & IGE Data 

0.92 ±5.2 ±10.4 

Nonlinear Network 
OGE Data 

0.98 ±2.7 ±5.4 

30 
Nonlinear Network 

IGE Data 
0.92 ±4.9 ±9.8 

Linear Network 
OGE Data 

0.92 ±5.7 ±11.4 
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Helicopter low airspeed is predicted within ±5.4 knots 

when the aircraft is operating out of ground effect. This 

accuracy is very good given that the measured reference speed 

has an uncertainty of ±5.0 knots. 

5    Example 2: Sideslip Angle Classification: 

In accordance with the present invention, sideslip angle 

during low airspeed flight of a Navy CH-46 helicopter was 

classified based on the 15 input parameters and the network 

equations learned during network training. Sideslip angle was 

10 initially modeled using the same BP network architecture as 

was used for airspeed predictions (i.e., the 2 hidden layer 

network with 25 PEs in each layer) . However, the BP network 

architecture was not successful for sideslip angle predictions 

for the OGE test data set.  It was postulated that lack of 

15 correlation in sideslip angle may result because the 

uncertainty in reference measurements using Doppler radar is 

quite high at airspeeds below 15 knots. However, removing OGE 

data below 15 knots and retraining the network did not improve 

accuracy. 

20 Since the BP network produced unsatisfactory results when 

estimating sideslip angle, an alternative approach was 

developed based on classification of sideslip angle into four 

quadrants as shown in FIG. 3 and discussed above. A linear 

vector quantization (LVQ) network was chosen.   Table 4 

25 presents results of sideslip angle classification for OGE and 

IGE flight conditions. Successful classification rates for 

each sideslip angle quadrant and an average successful 

classification rate (AVE, average of the four quadrant 

successful classification rates) are presented. 

29 



Navy Case No. 78,040 

TABLE 4 

Successful sideslip angle 
classification rate (%) 

FF    RSF   RWD   LSF   AVE 

OGE Training Set 98 98 99 97 98 

OGE Test Set 94 94 89 80 89 

IGE Training Set 98 99 99 98 98 

IGE Test Set 94 95 94 72 89 

Based on the premise that reference sideslip angle 

10 derived from airspeed measurements made below 15 knots have a 

high degree of inaccuracy, all input parameters corresponding 

to airspeed below 15 knots (i.e., input parameters calculated 

from variable state parameter data measured below 15 knots) 

were removed and the LVQ network was retrained. Table 5 

15 presents results of sideslip angle classification for OGE and 

IGE flight conditions with data for reference airspeeds below 

15 knots removed. 

TABLE 5 

Successful sideslip angle 
20 classification rate (%) 

FF RSF RWD LSF AVE 

OGE Training Set 99 99 100 99 99 

OGE Test Set 92 90 100 99 95 

IGE Training Set 99 100 99 100 100 

IGE Test Set 96 100 94 65 89 25 

Sideslip angle classification during OGE flight was 

significantly improved by using the LVQ network trained with 

data corresponding to airspeeds of 15 knot and greater. 

Average successful classifications improved to 95% on the test 

30 data. However, IGE test results showed no net improvement. 

For OGE flight, the difficulty in classifying left sideward 
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flight was eliminated when below 15 knot data were removed. 

However, for this case, the left sideward flight 

classification was worse for IGE flight. This suggests that, 

rather than inaccuracy in below 15 knot measurements, a 

5 dynamic unsteady flow region is created during IGE flight of 

the tandem rotor CH-46 helicopter that makes classifying left 

sideward flight difficult. 

Although specific input parameters, initial parameters, 

variable state parameters, networks and network architectures 

10 were employed in the present examples, other input parameters, 

initial parameters, variable state parameters, networks and 

architectures are equally applicable to the present invention. 

For different classes and configurations of helicopters, 

different variable state parameters may be more easily 

15 measured or more applicable to measurement. Moreover, for 

different classes and configurations of helicopters, airspeed 

and sideslip angle may be estimated better using different 

input parameters, initial parameters, variable state 

parameters, networks or network architectures. One skilled in 

20 the arts of helicopter airspeed determination and of neural 

networks can determine which input parameters would be most 

advantageous and the optimum network and network architecture 

for predicting the desired output based on the guidance 

provided herein. 

25 The advantages of the present invention are numerous. 

The present means and method for estimating low airspeed and 

sideslip angle provide a mechanically simple, inexpensive 

alternative to current low airspeed measurement technology. 

The neural network based means for determining low airspeed 

30 and sideslip angle uses only helicopter variable state 

parameters measured in the fixed reference frame of the 

helicopter fuselage. Thus, problems associated with complex 

and expensive methods of transferring information from the 
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rotating reference frame of the rotors to the nonrotating 

reference frame of the fuselage are eliminated. Furthermore, 

since the input parameters for the neural network are 

quantities that are commonly measured by helicopter flight 

5 data recording systems, the present invention may be easily 

and economically implemented without the added maintenance 

burden of additional sensors. The present invention is 

capable of improving both maintenance (by improving the 

performance of health and usage monitoring systems) and safety 

10 for those helicopters not equipped with low airspeed 

measurement systems. 
The present invention and many of its attendant 

advantages will be understood from the foregoing description 

and it will be apparent to those skilled in the art to which 

15 the invention relates that various modifications may be made 

in the form, construction and arrangement of the elements of 

the invention described herein without departing from the 

spirit and scope of the invention or sacrificing all of its 

material advantages.  It is therefore to be understood, the 

20 forms of the present invention herein described are not 

intended to be limiting but are merely preferred or exemplary 

embodiments thereof and 

the  invention may be practiced other than as 

specifically described. 
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ABSTRACT 

The invention is directed to a method, utilizing a neural 

network, for estimating helicopter airspeed in the low 

airspeed flight range of below about 50 knots using only fixed 

5 system parameters as inputs to the neural network. The method 

includes the steps of: (a) defining input parameters 

derivable from variable state parameters generated during 

flight of the helicopter and measurable in a nonrotating 

reference  frame  associated with the helicopter;    (b) 

10 determining the input parameters and a corresponding 

helicopter airspeed at a plurality of flight conditions 

representing a predetermined low airspeed flight domain of the 

helicopter; (c) establishing a learned relationship between 

the  determined  input parameters  and the  corresponding 

15 helicopter airspeed wherein the relationship is represented by 

at least one nonlinear equation; (d) storing the at least one 

nonlinear equation in a memory onboard the helicopter; (e) 

measuring real time values of the variable state parameters 

during low airspeed flight of the helicopter; (f) calculating 

20    real time values of the input parameters; (g) storing the real 

time values of the input parameters in the memory;  (h) 

processing the real time values of the input parameters in 

accordance with the at least one nonlinear equation to 

determine real time airspeed; and (i) displaying the real time 

25    airspeed. 
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